CHAPITRE 7

Machines thermiques

7.6 Cycle moteur de Brayton

Yook Un gaz parfait subit quatre processus réversibles formant le cycle
moteur de Brayton (fig. 7.1) :

1 — 2 compression adiabatique,

2 — 3 expansion isobare,

3 — 4 détente adiabatique,

4 — 1 contraction isobare.

Les pressions p; et ps ainsi que les volumes V; et V3 sont supposés connus.

PA
Py f---- 2 > 3
p] _______ 1 : 1 1 4
I
: ! .
4 v v

Fig. 7.1 Digramme (p, V) du cycle moteur de Brayton.

1) Déterminer le travail W3_,4 réalisé sur 'environnement lors de la détente
adiabatique 3 — 4.

2) Déterminer la chaleur Q23 fournie au gaz lors de 'expansion isobare
2—3.

3) Déterminer la variation d’entropie AS4_,; lors de la contraction isobare
4—1.

4) Esquisser le diagramme (T, .S) du cycle.
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Solution

1) Le travail (7.20) réalisé sur 'environnement durant une détente adiabatique
s’écrit,
Ty
W3H4:AU3H4:CNR dT:CNR(T4—T3)<O

Ts

Compte tenu de I’équation d’état (5.66) du gaz parfait,
p3Vs = NRT; et  psVy=NRT,
des propriétés des processus isobares,

b3 = p2 et D4 =p1
et de la propriété d’adiabaticité (5.108),
1/ 1/~
P3Vz§/ = p4V47 ainsi Vy = <p3> Vs = <p2> v,
D4 P

le travail W3_,4 réalisé sur I’environnement est mis sous la forme,

1/v
Wiy = c(paVi — p3V3) = c(p1Va — p2V3) = V3 <p1 (Z) - pz)

2) La chaleur (7.30) fournie au gaz lors de ’expansion isobare s’écrit,
T3
Qg_)ngHg_>32(6+1)NR dTZ(C+1) NR(T?,—TQ)>O
Ts

Compte tenu de I’équation d’état (5.66) du gaz parfait,
p2Va = NRT; et p3V3 = NRT3

de la propriété d’isobarité,
P3 = P2
et de la propriété d’adiabaticité (5.108),

¥ ¥ b v
V) =p2V, — Vo = o Wi

la chaleur Q)5_.3 fournie au gaz est mise sous la forme,

Q253 = (c+1)(p3Vs — p2Va) = (c+ 1) p2 (V3 — V2)

= (c+1)ps <V3 - (Z)W v1>
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Fig. 7.2 Diagramme (T, S) du cycle moteur de Brayton.

D’apres la définition (7.33) de la variation d’entropie durant la contraction
isobare, de I’équation d’état (5.66) du gaz parfait et de la propriété d’un
processus d’adiabacité énoncée précédemment, on obtient,

T

L dT T
—=(c+1)NRIn (1>
T Ty

_ Vi _ b1 1MVl
_(c+1)NRln(V4>—(c+1)NRln<<p2) v, <0

La compression adiabatique 1 — 2 est représentée sur le diagramme (7', S)
par un segment vertical de température croissante (fig. 7.2),

1
H
AS4*>1:/ %:(C+1)NR
4

S =81 =S5 = cste et T, < Ty

Compte tenu de la relation (5.99), ’expansion isobare 2 — 3 est représentée
sur le diagramme (7, .S) par une courbe convexe de température croissante
et d’entropie croissante,

T o Ss — S o1

B exp [ 23— P2

., P\(c+1)NR
La détente adiabatique 3 — 4 est représentée sur le diagramme (7, .5) par
un segment vertical de température décroissante,

S =853 =54 = cste et T3> 1T,

Compte tenu de la relation (5.99), la contraction isobare 4 — 1 est re-
présentée sur le diagramme (7',.S) par une courbe convexe de température
décroissante et d’entropie décroissante,

ﬁ—ex 751784 <1
o, P (c+1)NR
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7.9 Cycle d’Otto

Yok Le cycle d’Otto est un modele de moteur & combustion qui représente
le mode opératoire de la plupart des moteurs & combustion non diesel. II est
constitué de quatre processus lorsque le moteur est modélisé comme un systeme
fermé, et de deux processus isobares supplémentaires lorsque le systeme est
ouvert. Ces deux processus correspondent a ’admission d’air et a I’échappement
des gaz. Ainsi, on a,

e 0 — 1 admission isobare d’air,

e 1 — 2 compression adiabatique,

e 2 — 3 compression isochore,

e 3 — 4 détente adiabatique,

e 4 — 1 décompression isochore,

e 1 — 0 échappement isobare des gaz.
Supposer que les processus adiabatiques sont réversibles et que le gaz est un
gaz parfait caractérisé par le coefficient ¢ (5.78) et le coefficient v = (¢ + 1) /c.
Les valeurs suivantes de certaines variables d’état sont supposées connues : la
pression pi, les volumes Vi = V4 et Vo = V3, la température T3 et le nombre
de moles N d’air a ’admission. Analyser ce cycle en utilisant les instructions
suivantes.

1) Esquisser le diagramme (p, V') du cycle en représentant aussi les processus
d’admission et d’échappement.

2) Esquisser le diagramme (7,S) du cycle sans représenter les processus
d’admission et d’échappement.

3) Décrire ce que le moteur fait durant chaque processus.
4) Expliquer pourquoi un échange d’air avec I'extérieur est nécessaire.

5) Sur les diagrammes (p, V') et (T, S) déterminer les relations entre les aires
délimitées par les cycles, le travail W et la chaleur @ par cycle.

6) Déterminer toutes les variables d’état aux points 1, 2, 3 et 4 du cycle,
c’est-a-dire trouver po, p3, ps, 1o et Ty.

7) Déterminer le travail W effectué par cycle et la chaleur @) échangée durant
un cycle.

8) Déterminer le rendement du cycle d’Otto,

W
770**@

ot Q1 = Qas3.

Solution

1) La compression adiabatique 1 — 2 est représentée sur le diagramme (p, V')
par une courbe convexe de pression croissante et de volume décroissant

(fig. 7.3),
D2 Vi\”
() s1
D1 <V2>
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La compression isochore 2 — 3 est représentée sur le diagramme (p, V') par
un segment vertical de pression croissante,

V=V, =V3; =cste et P2 < p3

La détente adiabatique 3 — 4 est représentée sur le diagramme (p, V') par
une courbe convexe de pression décroissante et de volume croissant,

)
B (‘é) <1
D3 Vy

La décompression isochore 4 — 1 est représentée sur le diagramme (p, V)
par un segment vertical de pression décroissante,

V =V, =V; = cste et Ps > p1

La compression adiabatique 1 — 2 est représentée sur le diagramme (7', S)
par un segment vertical de température croissante (fig. 7.4),

S =51 =55 =cste et T < Ty

Compte tenu de la relation (5.93), la compression isochore 2 — 3 est repré-
sentée sur le diagramme (7,S) par une courbe convexe de température
croissante et d’entropie croissante,

T Sz — 52

— =e —= ] >1

., P ( cNR
La détente adiabatique 3 — 4 est représentée sur le diagramme (7, S) par
un segment vertical de température décroissante,

S =53 =5, = cste et T3 > Ty

Compte tenu de la relation (5.93), la décompression isochore 4 — 1 est
représentée sur le diagramme (7', S) par une courbe convexe de température
décroissante et d’entropie décroissante,

T, 51— 54
i g1 P4 1
T eXp( cNR ) <

o

1

i
5.
Fig. 7.3 Diagramme (p, V) d’Otto Fig. 7.4 Diagramme (T, S) d’Otto

I
I
I
I
I
I
1
v, v, S Sy
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Durant I’admission isobare d’air 0 — 1, une masse d’air est amenée dans le
cylindre a pression atmosphérique constante p; lorsque le piston se déplace
et le volume a l'intérieur du cylindre augmente de V5 a V;. Durant la com-
pression adiabatique 1 — 2, D’air a l'intérieur du cylindre est comprimé
adiabatiquement par le piston d’un volume initial V7 & un volume final V5.
Durant la compression isochore 2 — 3, le mélange d’air et de carburant
est allumé. Durant la détente adiabatique 3 — 4, le gaz subit une détente
adiabatique du volume initial V3 au volume final Vy, ce qui ramene le piston
dans sa position initiale. A cet instant, le gaz occupe un volume V. Durant
la décompression isochore 4 — 1, la chaleur est restituée a I’environment
jusqu’a ce que la pression parvienne a nouveau a la pression atmosphé-
rique p;. Finalement, durant I’échappement isobare 4 — 0, le gaz est retiré
du cylindre a pression atmosphérique constante p; sous 'effet du déplace-
ment du piston, ce qui provoque une diminution du volume a l'intérieur du
cylindre de V7 a Vs.

Un moteur qui fonctionne selon le cycle d’Otto est un moteur a combustion.
Cela signifie que 'oxygene est essentiel pour que la réaction de combustion
chimique puisse avoir lieu. Apres chaque allumage, de 'air frais doit entrer
dans le cylindre afin de permettre & une nouvelle réaction de combustion
d’avoir lieu.

L’aire délimitée par le cycle dans le diagramme (p, V) s’écrit,

Va Va
%pdV: pdV-F/ pdV =—=Wio— Wi 4y=—W>0
Vi Vs

étant donné que Wo_,3 = Wy_,; = 0. Ainsi, I'aire délimitée par le cycle
dans le diagramme (p, V) représente 'opposé du travail W réalisé par le
gaz sur I’environnement durant un cycle. L’aire délimitée par le cycle dans
le diagramme (7', S) s’écrit,

53 Sl
?{TdS: TdS+/ TdS=Qs3+ Q41 =0Q >0
S2 S4

étant donné que Q1,2 = Q3,4 = 0. Ainsi, 'aire délimitée par le cycle dans
le diagramme (7T, S) représente la chaleur ) échangée par cycle. Comme
I’énergie interne U est une fonction d’état, on doit avoir Q = — W, en
accord avec la relation (7.9).

A Paide de la relation (5.108) et de I’équation d’état du gaz parfait (5.66),
les pressions sont données par,

o /ay _ NRT; _ NRT3 (B\"1
b2 =p1 v, 193—7‘/.2 ps = Vi Vi

et les températures par,

» Vi Vi (Vi i Va i
T = T = — Ty =Ts | —=
'"'NR 2 NR( ) o8
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7) D’apres la relation (7.20), les travaux effectués durant la compression et la
détente adiabatique s’écrivent,

T
W1_>2:AU1_>2=CNR dT:CNR(TQ—T1)>O
T
7,
W3H4:AU3Q4:CNR/ dT:CNR(T4—T3)<0
T3

Le travail réalisé par le gaz sur 'environnement durant un cycle est donné
par,
W =Wio+ W34 = CNR(T4 — T34 15 — Tl) <0

D’apres la relation (7.26), les chaleurs échangées durant la compression
isochore et la décompression isochore s’écrivent,

Us Ty
Qo3 = AUs3 = dU =cNR dT =cNR (T3 — T») >0

Uz Ts

Uy T
Q4_>1:AU4_>1:/ dU:CNR/ dT'=cNR(Ty — Ty) <0

Uy Ty

La chaleur fournie au gaz durant un cycle est donnée par,
Q=0Q23+Qus1=cNR(I3 - To+Ty - Ty) >0
8) A T'aide de la définition du rendement (7.55), on obtient,

W w 7C(T47T3+T27T1)

B _ 1 T, - Ty
o QT Q23 c(Tz — T>) T3 — Ty

7.10 Cycle d’Atkinson

Yook James Atkinson était un ingénieur anglais qui a concu plusieurs
moteurs & combustion. Le cycle thermodynamique qui porte son nom est une
modification du cycle d’Otto congue pour améliorer son rendement. Le prix a
payer pour parvenir a un meilleur rendement est une diminution du travail réa-
lisé par le gaz sur ’environnement durant un cycle. Le cycle idéalisé d’Atkinson
est constitué des six processus réversibles suivants :

e 1 — 2 : compression adiabatique,

e 2 — 3 : compression isochore,

e 3 — 4 : expansion isobare,

e 4 — 5 : détente adiabatique,

e 5 — 6 : décompression isochore,

e 6 — 1 : contraction isobare.
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On suppose que les processus adiabatiques sont réversibles et que le cycle a lieu
sur un gaz parfait qui est caractérisé par,

c+1
c

pV =NRT U=cNRT v =

Les grandeurs physiques suivantes qui caractérisent le cycle sont supposées
connues : les volumes Vi, V5 et Vg, les pressions p; et ps, la température T
et le nombre de moles N de gaz. Analyser ce cycle en utilisant les instructions
suivantes.

1) Esquisser le diagramme (p, V) du cycle d’Atkinson.

2) Déterminer les pressions ps, p4, ps, Pe, les volumes Vi, Vi, Vi et les tempé-
ratures Ty, To, T3, Ty, Tg, en termes des grandeurs physiques connues.

3) Déterminer les travaux Wi_o, Wa_3, W54, Wy5, Wi, We—1 et le
travail W effectué par cycle.

4) Déterminer les transferts de chaleur Q1_2, Qa—3, Q3-4, Quss, Qs5-6,
Qs—1 et la chaleur QT = Qa_3 + Q3_4 fournie au gaz.

5) Déterminer le rendement du cycle d’Atkinson,

77A:*§

Solution

1) La compression adiabatique 1 — 2 est représentée sur le diagramme (p, V')
par une courbe convexe de pression croissante et de volume décroissant

(fig. 7.5),
.
b2 _ (V1> >1
D1 Va
P A
¢ Q34>4
ml__ 3 4
—>
QZ%‘%
2
| =4
| )
o N 500,
1" T T T T T T T T T [ J5—6
| oY@ |
I I L3y
Vs Vi Ve

Fig. 7.5 Diagramme (p, V) du cycle d’Atkinson
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La compression isochore 2 — 3 est représentée sur le diagramme (p, V') par
un segment vertical de pression croissante,

V=V, =V3 =cste et P2 < p3

L’expansion isobare 3 — 4 est représentée sur le diagramme (p, V') par un
segment horizontal de volume croissant,

p = p3 = pg = cste et Vo < Vs

La détente adiabatique 4 — 5 est représentée sur le diagramme (p, V') par
une courbe convexe de pression décroissante et de volume croissant,

V vy
Ps = (4> <1
D4 Vs
La décompression isochore 5 — 6 est représentée sur le diagramme (p, V)
par un segment vertical de pression décroissante,

V =V5 =V = cste et Ps > Pe

La contraction isobare 6 — 1 est représentée sur le diagramme (p, V') par
un segment horizontal de volume décroissant,

p = pg = p1 = cste et Ve >N,

A Taide de la relation (5.108) et de I'équation d’état du gaz parfait (5.66),
les pressions sont données par,

B Vi K B _ NRT; B
p2=n 7 P4 =Dp3 bs = Ve Pe = D1
et les volumes par,
NRTs\7 2=t
Vs=Va  Vi= ( 5) Vs Vs =V
p3
Les températures s’écrivent,
Vi A NA p3 Va
'""'NR > NR (V2> " NR
~y—1
psVe\ 7 .2 1 Ve
T, = T Ts =
* (NR) 5 °" NR

D’apres la relation (7.20), les travaux effectués durant la compression adia-
batique et la détente adiabatique s’écrivent,

T
W1_>2:AU1_>2=CNR dT:CNR(TQ—T1)>O
T
T,
W4*>5:AU4*>5:CNR/ dT:CNR(T57T4)<O
Ty
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D’apres la relation (7.25), il n’y a pas de travail effectué durant la compres-
sion isochore et la décompression isochore,

Wa3 = Ws_6 =0

D’apres la relation (7.29), les travaux effectués durant les processus isobares
s’écrivent,

4 Va
WH:—/ pdV:—m/ AV = —py (Vi — Vi)
3

Vs
=—NR (T4— T3)<0

1 1%
Wor == [ pdV=—p [~ aV=—pi(vi- Vi)
6 Ve
=—NR(T1 — Ts) >0
Le travail effectué sur le gaz durant un cycle s’écrit,

W =Wi_o+Wa_s+ Wis + Ws
:CNR(TQ— T +Ts — T4)— NR (T4— T5+1T) — T(,)<O

4) D’apres la relation (7.19), il n’y a pas d’échange de chaleur durant la com-
pression adiabatique et la détente adiabatique,

QI%Q = Q4~>5 =0

D’apres la relation (7.26), les chaleurs échangées durant la compression
isochore et la décompression isochore sont données par,

Us Ts

Q2_>3:AU2_>3:/ dU:CNR/ dT:CNR(T37T2)>O
Uz T>
Us Ts

QEHG:AUs%z/ dU =c¢NR | dT' =¢NR(Ts— T5) <0
Us T

D’apres la relation (7.30), les chaleur échangées durant I’expansion isobare
et la contraction isobare s’écrivent,

Hy T,
Q3—>4:AH3—>4:/ dH:(C+1)NR/ T
Hj3 Ts
=(c+1) NR(Ty — T5) > 0
H, T
Q6—>1:AH6—>1:/ dH:(C+1)NR/ dr
Hg Ts

:(c+ 1) NR(Tl— TG) <0

La chaleur fournie par le réservoir chaud s’écrit,

QY =Qo3+ Q34 =cNR(T3 — o)+ (¢+1) NR(Ty — T3) >0
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5) A l'aide de la définition du rendement (7.55), on obtient,

W -1+ T -Ty) - (Ty— T3+ T — Ts)
e c(Ts— o) + (c+ 1) (Ty — Ty)
(T —To+Ty—T5)— (= 1) (T3 — Ty +Ts — T1)

(T3 — To) + v (Ty — T3)

7.11 Cycle calorifique

Yorodok Un gaz parfait caractérisé par le coefficient ¢ (5.78) et par le coef-
ficient v = (¢4 1) /c subit un cycle calorifique constitué de quatre processus
réversibles (fig. 7.6) :

e 1 — 2 : compression adiabatique,

e 2 — 3 : contraction isobare,

e 3 — 4 : décompression isochore,

e 4 — 1 : expansion isobare.
'\

)2

Py

Fig. 7.6 Diagramme (p, V) du cycle calorifique

Analyser ce cycle en utilisant les instructions suivantes.

1) Déterminer le volume V5 en termes du volume V; et des pressions p; et ps.

) Déterminer la variation d’entropie ASs_,3 durant la contraction isobare.
3) Déterminer la chaleur échangée Q2,3 durant la contraction isobare.

) Supposer a présent qu’au lieu d’un gaz parfait on a utilisé un fluide qui est
entierement dans un état gazeux au point 2 et entierement dans un état
liquide au point 3. La contraction isobare 2 — 3 est alors une transition de
phase qui a lieu a la température T' et qui est caractérisée par la chaleur
latente molaire de vaporisation ¢,_,4. Déterminer la variation d’entropie
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ASs5_,3 durant la transition de phase en termes du nombre de moles N de
fluide, du volume V5, de la pression py et de la chaleur latente molaire de
vaporisation fy_,4, en supposant que pV = NRT dans la phase gazeuse.

Solution
1) A l'aide de la condition d’adiabacité (5.108), le volume V; s'écrit,

1
o (2)
b2

2) D’apres la relation (7.33), la variation d’entropie durant la contraction iso-
bare est donnée par,

T3

S3
S

2 T>

dT Ty
Tf(c—i-l)NRln <T2) <0

3) D’apres la relation (7.30), la chaleur restituée a I’environnement durant la
contraction isobare s’écrit,

H3 TB
dH = (c+ 1)NR/ ar

1>

Q2—>3 = A]—7[2—>3 = /

Ho>
:(0—1—1) NR(Tg— Tg) <0

4) D’apres la relation (2.57), la chaleur restituée a l'environnement durant la
transition de phase a température T est,

S3
Q23=T dS =T (S3— S2) =TASy.3<0
Sa

D’apres les relations (6.62), (6.68) et ’équation d’état du gaz parfait (5.66),
on en conclut que,

Q2—>3 _ Qé—>g _ Ngé—m _ NQRéZ—m

A = = = =
S298 = = T T vy 0

7.12 Cycle de Carnot progressif

LYook Un systeme simple constitué de N moles de gaz parfait monoatomique
homogene est contenu dans un cylindre fermé. Durant chaque cycle ditherme,
le gaz parfait est mis en contact avec une source chaude fermée, qui est un
réservoir & température fixée T, et avec une source froide fermée et rigide qui
est constituée de N moles de gaz parfait diatomique homogene. La source froide
n’est pas un réservoir de chaleur. Ainsi, la température de la source froide varie
d’un cycle au suivant di au transfert de chaleur avec le systeme. Toutefois,
dans ce modele, on fait I'approximation que la température de la source froide
est constante durant chaque cycle. Cela est le cas si le cycle est suffisamment
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petit pour étre considéré comme quasiment infinitésimal. Au début du n® cycle,
la température de la source froide est T~ (n). Durant ce cycle, le gaz parfait
monoatomique subit les quatre processus réversibles formant le cycle réversible
moteur de Carnot (fig. 7.7) :

e 1 — 2 détente isotherme & température T,
e 2 — 3 détente adiabatique,
e 3 — 4 compression isotherme & température T~ (n),

e 4 — 1 compression adiabatique.

La capacité thermique isochore Cy des N moles de gaz monoatomique dans le
systeme et la capacité thermique isochore Cy, (n) des N moles de gaz diato-
mique dans la source froide durant le n® cycle s’écrivent,

CV:cNR:%NR et Cy(n)=c (n)NR

En raison des degrés de liberté internes aux molécules, la capacité thermique
isochore de la source froide change brusquement en fonction de la température.
On modélise cela en considérant que durant les ng — 1 premiers cycles, c’est-
a-dire n < ng, le gaz parfait de la source froide est diatomique rigide et que, a
partir du nf cycle, c’est-a-dire n > ny, il devient diatomique vibrant,

si n < ng
¢ (n)=
si n = ng

N =3 N ot

Les grandeurs suivantes sont supposées connues : la température T de la
source chaude, la température T~ (n) de la source froide au début du n® cycle,
les volumes Vi et V3, le nombre N de moles de gaz parfait, les nombres de
cycles n et ng, la constante ¢~ (n).

Analyser ce cycle en utilisant les instructions suivantes.
1) Esquisser qualitativement le diagramme (7,.S) du n® cycle en indiquant les
états 1 a 4 et en définissant I'orientation du cycle avec des fleches.

2) Déterminer la chaleur @~ (n) restituée & la source froide & température
T~ (n) durant le n® cycle.

3) Déterminer le travail W (n) effectué sur le systéme durant le n® cycle.

4) Déterminer la variation d’enthalpie AHs_,3 (n) du systéme lors de la dé-
tente adiabatique 2 — 3 durant le n® cycle.

5) Montrer que laccroissement de température AT ~(n) de la température de
la source froide lors du n® cycle s’écrit,

et déterminer le coefficient A (n) > 0.
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4

3

T~ (n)

» |/
Vi Vi(n) Vo Vz(n)

Fig. 7.7 Diagramme (p, V) du n® cycle de Carnot progressif.

6) En déduire les températures de la source froide T' ~(ng) et T'~ (n1) au début
des nf et n§ cycles, olt ng > ng, en termes de sa température initiale 7'~ (1)
au début du 1°" cycle.

7) Durant le 5° cycle, en supposant ng > 5, on constate que le rendement
nc (5) du moteur fonctionnant selon ce cycle de Carnot progressif a diminué
de 20% par rapport au rendement n¢ (1) durant le 1°7 cycle. Déterminer
le rapport des volumes V5/V; en termes de la température 7'~ (1) de la
source froide au début du 1°F cycle. En déduire la température au début du
5¢ cycle.

Solution

1) La détente isotherme 1 — 2 est représentée sur le diagramme (7, S) par un

T
A
] I 1 > 2
A Y
T~ (n)|---- i < 3
| |
: :
» S
ST St

Fig. 7.8 Diagramme (T, S) du n® cycle de Carnot progressif.
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segment horizontal d’entropie croissante (fig. 7.8),
Tt =T, =Ty = cste et ST =5, <8=58"

La détente adiabatique 2 — 3 est représentée sur le diagramme (7', .S) par
un segment vertical de température décroissante,

St =Sy = S5 = cste et Tt =Ty, >Ty =T~

La compression isotherme 3 — 4 est représentée sur le diagramme (T, S)
par un segment horizontal d’entropie décroissante,

T~ =T3 =Ty = cste et ST =8;>8,=5"

La compression adiabatique 4 — 1 est représentée sur le diagramme (7, .5)
par un segment vertical de température croissante,

ST =84,=351 = cste et T =Ty<Ty=T"

Durant le n® cycle, la chaleur Q™ (n) est restituée par le gaz parfait mono-
atomique a la source froide durant la compression isotherme a température
T~ (n),

Sa S~

T(n)dS(n)=T"(n) / ds

S+

@ ()=Qui(n) = [

S3
ol1 S3 = St et Sy = S~. Durant ce processus, la relation de Gibbs s’écrit,
dU=T"(n)dS — p(n)dV(n) =0
Ainsi, pour le gaz parfait monoatomique durant la compression isotherme,

pm)dv(n)
="

compte tenu de 1’équation d’état,
p(n)V(n)=NRT"(n)

la chaleur @~ (n) restituée & la source froide devient,

Va(n) n n
e I

Durant la détente adiabatique 2 — 3 et la compression adiabatique 4 — 1,
les températures et volumes satisfont les identités suivantes,

TV =T )V () et TTWVYTI =T () V) ()

ouTy =Ty, =T7" et T3(n) =Ty (n) =T (n). Le rapport de ces identités

s’écrit, » .
) -G
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Par conséquent, on en déduit que,

V1 o V4 (n)

>1

Par conséquent, la chaleur Q™ (n) restituée a la source froide devient,

Q (n)=—NRT (n) In (?) <0

1

La chaleur fournie au systeme durant la détente isotherme 1 — 2 s’écrit,

Vs
Qt=Q1 = NRT*/ i
Vi

=NRT" In <“j2> >0

1

Compte tenu du fait que les processus 2 — 3 et 4 — 1 sont adiabatiques,
les transferts de chaleur durant ces processus sont nuls,

Q253=0 et Q41 =0

Par conséquent, compte tenu des chaleurs Q, Q@ (n), Q2-3, Q41, la
chaleur fournie au systeme durant le n° cycle est,

Q(n) =Qi52+ Qa3+ Q354 (n) + Qa1 = QT+ Q (n)
= NR (T+ - T—(n)) In (?) >0

1

D’apres le premier principe appliqué au n° cycle, le travail réalisé sur I’envi-
ronnement durant le n® cycle s’écrit,

W (n) = AU (n) — Q(n)z—Q(n):—NR(T*— T—(n)) In (x‘f) <0

1

Compte tenu de la relation de Mayer, la variation d’enthalpie lors de la
détente adiabatique 2 — 3 durant le n® cycle s’écrit,

AHy_ 5 (n) = C, (T3 (n) — Tg) = (Cy + NR) (T— (n) — T+)
= e+ )NR (T~ ()~ T%) = _gNR(T+_ T (n)) <0

Lors du n® cycle, la chaleur restituée a la source froide rigide de capa-
cité thermique isochore Cy, (n) est 'opposé de la chaleur cédée par le gaz
monoatomique Q~ (n),

—-Q (n)=C, (n) AT (n) >0

Par conséquent, I’accroissement de température AT ~(n) de la source froide
s’écrit,

AT == G = o () = i (3) >0




Cycle de Carnot progressif 17

Par conséquent, le coefficient A (n) vaut,

- () -

La température de la source froide au début du nf cycle s’écrit,

T=(no) =T (no— 1) + AT ~(ng — 1) = T~ (ng — 1) (1+)\(n0 - 1))

Jusqu’au début du ng cycle, le gaz parfait de la source froide est diatomique
rigide, c’est-a-dire ¢~ (n) = 5/2. Ainsi, par récurrence, la température de
la source froide devient,

- 0T )70 (20 (2)

n=1

Du n§ cycle jusqu’au début du n§ cycle, le gaz diatomique de la source froide
est vibrant, c¢’est-a-dire ¢ ~(n) = 7/2. Ainsi, par récurrence, la température
de la source froide devient,

=) =70 T (130) =700 (12 (1))

n=no

En substituant la température T~ (ng) au début du nf cycle dans la tem-
pérature T'~(n1) au début du n§ cycle, on en conclut que,

- ()2 ()

Compte tenu de la chaleur Q~ (n) restituée & la source froide, et de la cha-
leur @ (n) fournie au systéme ou du travail @ (n) réalisé sur ’environnement
durant le n® cycle, le rendement du moteur de Carnot durant le 5¢ cycle
s’écrit,
wE)_Q6B)  TH-T(5)
Q+ Q+ T+

Le rapport des rendements s’écrit,

no(5)  TH-T7(5 4

ne() TH-T-(1) 5

Ainsi, la température T~ (5) s’écrit,

TT 44T (1)
5

Durant le 5° cycle, ou ng > 5, le gaz parfait de la source froide est diato-
mique rigide, c’est-a~dire ¢~ (n) = 5/2. La température évaluée durant le

5°¢ cycle s’écrit,
2
T-5)=T" ()<1+1 (VQ)>
\%1

T-(5)=
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En comparant ces deux relations, on en déduit,
T+ +4T (1 2 :
T +47-(1) =(14+Zmn Z]
5T—(1) 5 \%1
Par conséquent, le rapport des volumes vaut,

Vs 5 (T++4T(1)>1/4 5

7 SR 6Y T2

7.13 Machine de Stirling a deux compartiments

Yvevok Dans une machine Stirling opérant un cycle calorifique, un gaz par-

fait est enfermé par deux pistons dans un cylindre métallique d’axe horizontal
(fig. 7.9).

Tt ©) T- T @ T"
V- vt
Tt - Tt T
T+ ® - Tt @ T
% vt
Tt - Tt T

Fig. 7.9 Etats caractéristiques du cycle calorifique d’une machine de Stirling. Les parois
de gauche et de droite sont les sources de chaleur & températures T+ et T~. Les surfaces
striées représentent la grille séparant les deux compartiments. La grille n’est pas en contact
thermique avec ’environnement.

Les parois disjointes du cylindre, représentées en gris foncé, sont les sources
de chaleur & température T et T~. Les deux compartiments dans lesquels

L\

T+

T 4

.

Fig. 7.10 Diagramme (p, V) du cycle de Stirling calorifique pour un gaz parfait.
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se trouve le gaz sont séparés par une grille, qui fait office de paroi perméable
représentée avec des stries, a travers laquelle passe le gaz lors du mouvement
des pistons. Dans les deux compartiments, considérés comme des sous-systemes
simples, le gaz parfait, caractérisé par le coeflicient ¢ (5.78), subit un cycle
calorifique de Stirling constitué de quatre processus (fig.7.10) :

1 — 2 : compression isotherme & la température T des parois de gauche;
2 — 3 : décompression a travers la grille d’'un volume initial V'~ a pression
constante ps & gauche & un volume final V'~ & pression constante ps a
droite;

3 — 4 : détente isotherme a la température T~ des parois de droite;

4 — 1 : compression a travers la grille d'un volume initial V™ & pression
constante py4 & droite & un volume final V' & pression constante p; & gauche.

Analyser ce cycle en utilisant les instructions suivantes.

1)

Déterminer le travail W2+ ", 5 effectué par le piston de gauche sur le gaz a
pression constante py et le travail Wy_,, réalisé par le gaz sur le piston
de droite & pression constante ps lors de la décompression d’un volume
initial V'~ a gauche & un volume final V~. En déduire le travail Wy_,5 =
W2+ "3 + Wy_, 5 effectué par les pistons sur le gaz et 'exprimer en fonction
des températures T et T~ des deux sources de chaleur.

Déterminer le travail W,_,; effectué par le piston de droite sur le gaz a
pression constante py et le travail W, ,, réalisé par le gaz sur le piston de
gauche & pression constante p; lors de la compression d’un volume initial V+
a droite & un volume final V*. En déduire le travail Wy_,; = Wi, + W, ,,
réalisé par le gaz sur les pistons et I'exprimer en fonction des températures
T+ et T~ des deux sources de chaleur.

Déterminer la variation d’énergie interne AUs_,3 durant la décompression
et la variation d’énergie interne AU,_,; durant la compression.
Déterminer la chaleur Q2,3 fournie au gaz par les sources de chaleur durant
la décompression et la chaleur Q4,1 restituée aux sources de chaleur par
le gaz durant la compression.

Montrer que les variations d’enthalpie sont les chaleurs échangées entre les
sources de chaleur et le gaz parfait,

AHs 3= Qa3 et AHy 1 = Qa1

Solution

1)

Compte tenu de I’équation d’état du gaz parfait évaluée aux états 2 et 3,
po V- =NRT™ et psV- =NRT™
le travail W, "3 effectué par le piston de gauche sur le gaz a pression
constante p d’un volume initial V'~ & un volume final 0 s’écrit,
0

W;;?,:—pQ/ depQV_:NRT+
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et le travail W, ,, réalisé par le gaz sur le piston de droite a pression
constante p3 d’un volume initial 0 & un volume final V'~ est,

Wy g = —pg/v dV =—p3sV"  =—NRT™
0
Par conséquent, le travail effectué par les pistons sur le gaz durant la décom-
pression 2 — 3 s’écrit,
Wos =Wyl g+ Wy s =NR(Tt—T7) >0
Compte tenu de ’équation d’état du gaz parfait évalué aux états 4 et 1,
pa VT = NRT™ et m VT =NRTT

le travail W, ,; effectué par le piston de droite sur le gaz a pression
constante py d’un volume initial V' & un volume final 0 est,

0
Wi = *P4/ dV =ps V' = NRT~
v+

le travail Wj ", réalisé par le gaz sur le piston de gauche a pression constante
p1 d’un volume initial 0 & un volume final V't s’écrit,

v+
Wi, = —p1/ dV=—p Vt =—-NRT*
0
Par conséquent, le travail réalisé par le gaz sur les pistons durant la com-
pression 4 — 1 est,
Wisi =W+ W, =—-NR(TT - T7) <0
Ainsi,
Wi = —Was

Les variations d’énergie interne du gaz parfait (5.78) durant la décompres-
sion 2 — 3 et la compression 4 — 1 s’écrivent,

AUs3=—cNR(TT - T7) <0
AUjs1 =cNR(TT = T7) >0

D’apres le premier principe, la chaleur ()2_,3 fournie au gaz par les sources
de chaleur durant la décompression et la chaleur (Q4_,1 restituée aux sources
de chaleur par le gaz durant la compression s’écrivent,

Q23 =AU 3 — Wos=— (c+1)NR(TT - T7) <0
Qi1 =AUss1 — Wiy = (c+1)NR(TT - T7) >0

Les variations d’enthalpie (5.86) durant la décompression 2 — 3 et la com-
pression 4 — 1 s’écrivent,

AHy 3 = — (C+ 1)NR (T+ - T_) <0
AHy 1 =(c+1)NR(TT-T7)>0
Par conséquent,

AHp 3 = Q253 et AHy 1 = Qa1
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7.14 Cycle de Rankine

Yorokw  Un gaz parfait caractérisé par le coefficient ¢ (5.78) et par le coefficient
v = (¢+ 1) /e subit un cycle moteur de Rankine constitué de quatre processus
réversibles :

e 1 — 2 : expansion isobare,

e 2 — 3 : détente adiabatique,

e 3 — 4 : contraction isobare,

e 4 — 1 : compression adiabatique.

Ainsi, le cycle est représenté par un rectangle dans un diagramme (p,S)
(fig.7.11).

P A
e 1 2
4 3
p3
» S
Sl SQ

Fig. 7.11 Diagramme (p, S) d’un cycle de Rankine pour un gaz parfait.

Analyser ce cycle en utilisant les instructions suivantes.

1) Esquisser le diagramme (p, V) du cycle de Rankine pour un gaz parfait.

2) Déterminer les travaux effectués Wi_,2, Wa_,3, W3_,4 et Wy, et le travail
effectué durant un cycle W en termes des enthalpies Hy, Hy, Hz et Hy.

3) Déterminer la chaleur fournie au réservoir chaud QT = Q1,2 en termes
des enthalpies Hy, Ho, Hs et Hy.

4) Déterminer le rendement du cycle de Rankine pour un fluide parfait défini
comme,

w
nR:—@

Solution

1) L’expansion isobare 1 — 2 est représentée sur le diagramme (p, V') par un
segment horizontal de volume croissant (fig. 7.12),

p = p1 = py = cste et Vi<V
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L \

N

Y

P3 === <

>V
Fig. 7.12 Diagramme (p, V) d’un cycle de Rankine.

La détente adiabatique 2 — 3 est représentée sur le diagramme (p, V') par
une courbe concave de pression décroissante et de volume croissant,

D3 Va7
B_(2) <1
P2 (Vs)

La contraction isobare 3 — 4 est représentée sur le diagramme (p, V') par
un segment horizontal de volume décroissant,
p = p3 = pg = cste et Vs >V,

La compression adiabatique 4 — 1 est représentée sur le diagramme (p, V)
par une courbe concave de pression croissante et de volume décroissant,

D1 V4>7
Pr_(2) -
D4 (Vl

D’apres la relation (7.29), les travaux effectués durant l'expansion isobare
et la contraction isobare sont donnés par,

2 Va
WHF—/ paV=—p [ av=—p(Va- W)
1 Vi

—NR (TQ— Tl) <0

4 Va
W3—>4=—/ pdV =—-p dV =—p(Va—V3)
3 Vs

=—NR (T4—T3)>0

D’apres la relation (5.86), ces travaux peuvent étre exprimés en fonction
des enthalpies comme,
1 vy—1

W1—>2=C+1(H1—H2)=T(H1—H2)

1 -1
Wiu = (Hs — Hy) = ’YT (Hs — Hy)

c+1
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D’apres la relation (7.20), les travaux effectués durant la détente adiaba-
tique et la compression adiabatique sont donnés par,

T3
W2_>3:AU2_>3:CNR/ dT:CNR(T37T2)<O
T:

7,

Wi =AUssy =¢NR | dT =¢NR(Ty — Ty) > 0
T

D’apres la relation (5.86), ces travaux peuvent étre exprimés en fonction
des enthalpies comme,

c 1
W2a3:c+1(H3*H2):;(H3*H2)
c 1
W4a1—c+1(H1—H4)—;(H1—H4)

La travail effectué durant un cycle est donné par,

W =Wi_o+Waz3+ Wiy + Wiy
-1 1
:%(H1*H2+H3*H4)+;(H3*H2+H1*H4)
— H, — Hy+ Hs — H,

3) D’apres la relation (7.30), la chaleur fournie au gaz durant la détente isobare
est donnée par,

QT =Q152=AH,5=H,— H;

4) A Taide de la définition (7.55) du rendement, on obtient le rendement du
cycle,
w w _H,—- Hy+Hs— Hy Hs — Hy

= - — = — = :1_7
G Qt Q12 Hy — Hy Hy, — H;

7.17 Cycle de Stirling pour un fluide biphasique

Yorrok Un fluide de van der Waals constitué de N moles est contenu dans
un cylindre fermé. Le cycle moteur de Striling que subit le fluide biphasique
est formé de quatre processus :

e 1 — 2 détente isotherme réversible & température T,

e 2 3 décompression isochore réversible & volume V7,

e 3 — 4 condensation a température T~ et pression p—,

e 4 — 1 compression isochore réversible a volume V.
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P A

Fig. 7.13 Diagramme (p, V) du cycle moteur de Stirling pour un fluide biphasique.

La courbe de saturation est représentée en traitillé. Les valeurs suivantes de
certaines fonctions d’état et parametres sont supposées connues : la tempéra-
ture T" de la source chaude, la température T~ de la source froide, les volumes
VT et V7, le nombre N de moles et la chaleur latente molaire de vaporisation
lisg (fig. 7.13).

Analyser ce cycle en utilisant les instructions suivantes.

1)

2)

Déterminer la variation de pression Ap du fluide de van der Waals durant
un cycle.

Déterminer la chaleur Q;_,o fournie au fluide de van der Waals durant la
détente isotherme.

Déterminer la variation d’énergie libre AF}_,5 du fluide de van der Waals
durant la détente isotherme.

Déterminer la variation de I'enthalpie AH5_,3 du fluide de van der Waals
durant la décompression isochore en précisant son signe.

Exprimer la variation d’enthalpie AH3_,4 du fluide de van der Waals durant
la condensation, qui est une transition de phase & pression constante p~
ayant lieu lorsque le fluide est en contact avec un réservoir de travail, en
termes de la chaleur latente molaire de vaporisation ¢,_,, en précisant son
signe.

Déterminer la variation d’entropie AS;_,1 du fluide de van der Waals durant
la compression isochore en précisant son signe.

Déterminer la variation d’énergie de Gibbs AG3_,4 durant la condensation
dans le cas particulier ou les potentiels chimiques du gaz et du liquide
s’écrivent pg = po (Ny — Ng) et pe = po (Ne — Ny) ou N, et Ny sont les
nombres de moles de gaz et de liquide de van der Waals et pg = cste > 0.

Solution

1)

Comme la pression est une fonction d’état, sa variation sur un cycle est



Cycle de Stirling pour un fluide biphasique 25

nulle,
Ap = Ap1s2 + Apa 3+ Apz s + Apssy
=p2—Pp1+p3—p2t+ps—p3+p1—pa=0
Compte tenu de I’équation d’état du fluide de van der Waals (6.103), le
travail durant la détente isotherme & température 7't s’écrit,
2 vt vt
dv dVv
Wiso = — dV =—-NRT* —— + N? —
-2 /1p e VoNb T e

Le résultat de cette intégrale est,

VT — Nb 1 1
_ + RO 2 =
Wise=—NRT ln< b) + N a< >

La variation d’énergie interne du fluide de van der Waals (6.118) durant la
détente isotherme s’écrit,

1 1
— _ — N2 _
AUlHQ—UQ U1 N a(V_ V+>

En appliquant le premier principe pour un systéme fermé (1.65) compte
tenu du travail Wi_,5 et de la variation d’énergie interne AU;_, 5, la chaleur
fournie au gaz durant la contraction isotherme s’écrit,

vVt — Nb
Q12 =AUio— Wi =NRT In (VNb) 0

La différentielle de I’énergie libre (4.23) s’écrit,
dF =dU — Tt dS =dU — 6Q

Par intégration de la différentielle de 1’énergie libre dF' de I’état initial 1
a l’état final 2, on obtient la variation de I’énergie libre durant la détente
isotherme réversible,

AF 9 =AU — Q12 = Wiy

Compte tenu de la variation d’énergie interne AU;_,5, de la chaleur Q1o
ou du travail Wj_,5, la variation d’énergie libre durant la détente isotherme
s’écrit,

1 1 vVt — Nb
AF1~>2 = AU1~>2_ QIHQ = N2a <‘/_ - ‘/J’_) - NRT+ In (‘/_—]Vb)

Compte tenu de 1’énergie interne du fluide de van der Waals (6.116), son
enthalpie (4.29) s’écrit,

NZ2a n NRTV NZ2a
|4 V — Nb |4

H=U+pV =cNRT —
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qui est remis sous la forme,

N2bRT 2NZ2a
V — Nb |4

H=(c+1)NRT +

ou de maniere équivalente,

Nb 2 N%a

H= ((C+1)+V—Nb) NRT —

La variation d’enthalpie s’écrit,

Nb

AHQ%SZHS_ HZZ_ ((C+1)+w

NR(TtT-T7)<0
)ar(rs-T)

Compte tenu du premier principe (1.59) pour un systéme fermé, la diffé-
rentielle de I’enthalpie s’écrit,

dH =dU +p~ dV =0Q + W +p~ dV

Comme la déformation durant la transition de phase est réversible, le travail
infinitésimal (2.43) s’écrit,

W =—p dV

Compte tenu du travail infinitésimal W, la différentielle de ’enthalpie se
réduit a la chaleur infinitésimale,

dH = 5Q

Par intégration de la différentielle de l'enthalpie dH de ’état initial 3 a
I’état final 4, on obtient la variation de ’enthalpie durant la condensation,

AHsz 4 = Q354

La chaleur Q~ = @Q3_,4 restituée a la source froide par les N moles de gaz
de van der Waals durant la condensation est I’opposé de la chaleur fournie
aux N moles de liquide de van der Waals durant la vaporisation (J43,

Q  =Q354=—Qass=—Nl,y

Compte tenu de la chaleur QQ3_,4 restituée par le gaz de van der Waals, la
variation de I’enthalpie durant la condensation devient,

AHs yy=—NYli,,<0
La relation de Gibbs s’écrit,
dU =TdS — pdV
On tire de la relation de Gibbs la différentielle de I’entropie,

AU AT [2 N2 NR
- a ) dv

ds = & _ ;dV:cNR+<

T T V2T V- Nb
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Durant la compression isochore, le volume V™ est constant. Par intégration
de la différentielle de I'entropie dS de 1’état initial 4 a ’état final 1, on
obtient la variation d’entropie durant la compression isochore réversible,

Tt
dr T+
AS4_>1:/ CNRT:CNR1H<1L> >0

La différentielle de 1’énergie libre de Gibbs (4.40) & température et pression
constantes s’écrit,
dG = py dNg + pg dNg

Comme le systeme est fermé, le nombre de moles N de fluide est constant,
N = N¢+N, ainsi  Ng— N, =N-2N, et N¢— Ny =2N,— N
et les potentiels chimiques deviennent,
tg = po (N — 2.Np) ainsi  pre = — po (N — 2 Ny)
De plus, les différentielles des nombres de moles s’écrivent,
dN = dN;+dNy, =0 ainsi dNg = —dN

Durant la condensation, la pression p~ et la température T~ sont des
constantes. Par intégration de la différentielle de I’énergie libre de Gibbs
dG de Vétat initial 3 a ’état final 4, compte tenu des potentiels chimiques
g €t fie, et des différentielles de quantité de fluide dN, et dNy, on obtient
la variation d’énergie libre de Gibbs durant la condensation,

N N
AGasi= [ = m)dNe=~ [ 20 (N - 2N aN,
0 0

N N
:—2,,L0N/ sz+4uo/ NydN; =0
0 0

Avec ce modele de potentiels chimiques opposés, la diminution de 1’éner-
gie libre de Gibbs du gaz de van der Waals compense 'augmentation de
I’énergie libre de Gibbs du liquide de van der Waals durant la condensation.



