
Chapitre 7

Machines thermiques

7.6 Cycle moteur de Brayton

Un gaz parfait subit quatre processus réversibles formant le cycle
moteur de Brayton (fig. 7.1) :

1 → 2 compression adiabatique,

2 → 3 expansion isobare,

3 → 4 détente adiabatique,

4 → 1 contraction isobare.

Les pressions p1 et p2 ainsi que les volumes V1 et V3 sont supposés connus.

Fig. 7.1 Digramme (p, V ) du cycle moteur de Brayton.

1) Déterminer le travail W3→4 réalisé sur l’environnement lors de la détente
adiabatique 3 → 4.

2) Déterminer la chaleur Q2→3 fournie au gaz lors de l’expansion isobare
2 → 3.

3) Déterminer la variation d’entropie ∆S4→1 lors de la contraction isobare
4 → 1.

4) Esquisser le diagramme (T, S) du cycle.
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7.6 Solution

1) Le travail (7.20) réalisé sur l’environnement durant une détente adiabatique
s’écrit,

W3→4 = ∆U3→4 = cNR

∫ T4

T3

dT = cNR (T4 − T3) < 0

Compte tenu de l’équation d’état (5.66) du gaz parfait,

p3V3 = NRT3 et p4V4 = NRT4

des propriétés des processus isobares,

p3 = p2 et p4 = p1

et de la propriété d’adiabaticité (5.108),

p3V
γ
3 = p4V

γ
4 ainsi V4 =

(
p3
p4

)1/γ

V3 =

(
p2
p1

)1/γ

V3

le travail W3→4 réalisé sur l’environnement est mis sous la forme,

W3→4 = c (p4V4 − p3V3) = c (p1V4 − p2V3) = cV3

(
p1

(
p2
p1

)1/γ

− p2

)

2) La chaleur (7.30) fournie au gaz lors de l’expansion isobare s’écrit,

Q2→3 = ∆H2→3 = (c+ 1)NR

∫ T3

T2

dT = (c+ 1) NR (T3 − T2) > 0

Compte tenu de l’équation d’état (5.66) du gaz parfait,

p2V2 = NRT2 et p3V3 = NRT3

de la propriété d’isobarité,
p3 = p2

et de la propriété d’adiabaticité (5.108),

p1V
γ
1 = p2V

γ
2 → V2 =

(
p1
p2

)1/γ

V1

la chaleur Q2→3 fournie au gaz est mise sous la forme,

Q2→3 = (c+ 1) (p3V3 − p2V2) = (c+ 1) p2 (V3 − V2)

= (c+ 1) p2

(
V3 −

(
p1
p2

)1/γ

V1

)



Cycle moteur de Brayton 3

Fig. 7.2 Diagramme (T, S) du cycle moteur de Brayton.

3) D’après la définition (7.33) de la variation d’entropie durant la contraction
isobare, de l’équation d’état (5.66) du gaz parfait et de la propriété d’un
processus d’adiabacité énoncée précédemment, on obtient,

∆S4→1 =

∫ 1

4

dH

T
= (c+ 1)NR

∫ T1

T4

dT

T
= (c+ 1)NR ln

(
T1

T4

)
= (c+ 1)NR ln

(
V1

V4

)
= (c+ 1)NR ln

((
p1
p2

)1/γ
V1

V3

)
< 0

4) La compression adiabatique 1 → 2 est représentée sur le diagramme (T, S)
par un segment vertical de température croissante (fig. 7.2),

S = S1 = S2 = cste et T1 < T2

Compte tenu de la relation (5.99), l’expansion isobare 2 → 3 est représentée
sur le diagramme (T, S) par une courbe convexe de température croissante
et d’entropie croissante,

T3

T2
= exp

(
S3 − S2

(c+ 1)NR

)
> 1

La détente adiabatique 3 → 4 est représentée sur le diagramme (T, S) par
un segment vertical de température décroissante,

S = S3 = S4 = cste et T3 > T4

Compte tenu de la relation (5.99), la contraction isobare 4 → 1 est re-
présentée sur le diagramme (T, S) par une courbe convexe de température
décroissante et d’entropie décroissante,

T1

T4
= exp

(
S1 − S4

(c+ 1)NR

)
< 1
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7.9 Cycle d’Otto

Le cycle d’Otto est un modèle de moteur à combustion qui représente
le mode opératoire de la plupart des moteurs à combustion non diesel. Il est
constitué de quatre processus lorsque le moteur est modélisé comme un système
fermé, et de deux processus isobares supplémentaires lorsque le système est
ouvert. Ces deux processus correspondent à l’admission d’air et à l’échappement
des gaz. Ainsi, on a,

• 0 → 1 admission isobare d’air,

• 1 → 2 compression adiabatique,

• 2 → 3 compression isochore,

• 3 → 4 détente adiabatique,

• 4 → 1 décompression isochore,

• 1 → 0 échappement isobare des gaz.

Supposer que les processus adiabatiques sont réversibles et que le gaz est un
gaz parfait caractérisé par le coefficient c (5.78) et le coefficient γ = (c+ 1) /c.
Les valeurs suivantes de certaines variables d’état sont supposées connues : la
pression p1, les volumes V1 = V4 et V2 = V3, la température T3 et le nombre
de moles N d’air à l’admission. Analyser ce cycle en utilisant les instructions
suivantes.

1) Esquisser le diagramme (p, V ) du cycle en représentant aussi les processus
d’admission et d’échappement.

2) Esquisser le diagramme (T, S) du cycle sans représenter les processus
d’admission et d’échappement.

3) Décrire ce que le moteur fait durant chaque processus.

4) Expliquer pourquoi un échange d’air avec l’extérieur est nécessaire.

5) Sur les diagrammes (p, V ) et (T, S) déterminer les relations entre les aires
délimitées par les cycles, le travail W et la chaleur Q par cycle.

6) Déterminer toutes les variables d’état aux points 1, 2, 3 et 4 du cycle,
c’est-à-dire trouver p2, p3, p4, T2 et T4.

7) Déterminer le travail W effectué par cycle et la chaleur Q échangée durant
un cycle.

8) Déterminer le rendement du cycle d’Otto,

ηO = − W

Q+

où Q+ = Q2→3.

7.9 Solution

1) La compression adiabatique 1 → 2 est représentée sur le diagramme (p, V )
par une courbe convexe de pression croissante et de volume décroissant
(fig. 7.3),

p2
p1

=

(
V1

V2

)γ

> 1



Cycle d’Otto 5

La compression isochore 2 → 3 est représentée sur le diagramme (p, V ) par
un segment vertical de pression croissante,

V = V2 = V3 = cste et p2 < p3

La détente adiabatique 3 → 4 est représentée sur le diagramme (p, V ) par
une courbe convexe de pression décroissante et de volume croissant,

p4
p3

=

(
V3

V4

)γ

< 1

La décompression isochore 4 → 1 est représentée sur le diagramme (p, V )
par un segment vertical de pression décroissante,

V = V4 = V1 = cste et p4 > p1

2) La compression adiabatique 1 → 2 est représentée sur le diagramme (T, S)
par un segment vertical de température croissante (fig. 7.4),

S = S1 = S2 = cste et T1 < T2

Compte tenu de la relation (5.93), la compression isochore 2 → 3 est repré-
sentée sur le diagramme (T, S) par une courbe convexe de température
croissante et d’entropie croissante,

T3

T2
= exp

(
S3 − S2

cNR

)
> 1

La détente adiabatique 3 → 4 est représentée sur le diagramme (T, S) par
un segment vertical de température décroissante,

S = S3 = S4 = cste et T3 > T4

Compte tenu de la relation (5.93), la décompression isochore 4 → 1 est
représentée sur le diagramme (T, S) par une courbe convexe de température
décroissante et d’entropie décroissante,

T1

T4
= exp

(
S1 − S4

cNR

)
< 1

V1V2

p

V

3

2

1

4

Fig. 7.3 Diagramme (p, V ) d’Otto

S1 S3

S

T
3

4

2

1 V=V1

V=V2

Fig. 7.4 Diagramme (T, S) d’Otto



6 Machines thermiques

3) Durant l’admission isobare d’air 0 → 1, une masse d’air est amenée dans le
cylindre à pression atmosphérique constante p1 lorsque le piston se déplace
et le volume à l’intérieur du cylindre augmente de V2 à V1. Durant la com-
pression adiabatique 1 → 2, l’air à l’intérieur du cylindre est comprimé
adiabatiquement par le piston d’un volume initial V1 à un volume final V2.
Durant la compression isochore 2 → 3, le mélange d’air et de carburant
est allumé. Durant la détente adiabatique 3 → 4, le gaz subit une détente
adiabatique du volume initial V3 au volume final V4, ce qui ramène le piston
dans sa position initiale. À cet instant, le gaz occupe un volume V4. Durant
la décompression isochore 4 → 1, la chaleur est restituée à l’environment
jusqu’à ce que la pression parvienne à nouveau à la pression atmosphé-
rique p1. Finalement, durant l’échappement isobare 4 → 0, le gaz est retiré
du cylindre à pression atmosphérique constante p1 sous l’effet du déplace-
ment du piston, ce qui provoque une diminution du volume à l’intérieur du
cylindre de V1 à V2.

4) Un moteur qui fonctionne selon le cycle d’Otto est un moteur à combustion.
Cela signifie que l’oxygène est essentiel pour que la réaction de combustion
chimique puisse avoir lieu. Après chaque allumage, de l’air frais doit entrer
dans le cylindre afin de permettre à une nouvelle réaction de combustion
d’avoir lieu.

5) L’aire délimitée par le cycle dans le diagramme (p, V ) s’écrit,∮
p dV =

∫ V2

V1

p dV +

∫ V4

V3

p dV = −W1→2 − W3→4 = −W > 0

étant donné que W2→3 = W4→1 = 0. Ainsi, l’aire délimitée par le cycle
dans le diagramme (p, V ) représente l’opposé du travail W réalisé par le
gaz sur l’environnement durant un cycle. L’aire délimitée par le cycle dans
le diagramme (T, S) s’écrit,∮

T dS =

∫ S3

S2

T dS +

∫ S1

S4

T dS = Q2→3 +Q4→1 = Q > 0

étant donné que Q1→2 = Q3→4 = 0. Ainsi, l’aire délimitée par le cycle dans
le diagramme (T, S) représente la chaleur Q échangée par cycle. Comme
l’énergie interne U est une fonction d’état, on doit avoir Q = −W , en
accord avec la relation (7.9).

6) À l’aide de la relation (5.108) et de l’équation d’état du gaz parfait (5.66),
les pressions sont données par,

p2 = p1

(
V1

V2

)γ

p3 =
N RT3

V2
p4 =

N RT3

V1

(
V2

V1

)γ− 1

et les températures par,

T1 =
p1 V1

N R
T2 =

p1 V1

N R

(
V1

V2

)γ− 1

T4 = T3

(
V2

V1

)γ− 1
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7) D’après la relation (7.20), les travaux effectués durant la compression et la
détente adiabatique s’écrivent,

W1→2 = ∆U1→2 = cNR

∫ T2

T1

dT = cNR (T2 − T1) > 0

W3→4 = ∆U3→4 = cNR

∫ T4

T3

dT = cNR (T4 − T3) < 0

Le travail réalisé par le gaz sur l’environnement durant un cycle est donné
par,

W = W1→2 +W3→4 = cNR (T4 − T3 + T2 − T1) < 0

D’après la relation (7.26), les chaleurs échangées durant la compression
isochore et la décompression isochore s’écrivent,

Q2→3 = ∆U2→3 =

∫ U3

U2

dU = cNR

∫ T3

T2

dT = cNR (T3 − T2) > 0

Q4→1 = ∆U4→1 =

∫ U1

U4

dU = cNR

∫ T1

T4

dT = cNR (T1 − T4) < 0

La chaleur fournie au gaz durant un cycle est donnée par,

Q = Q2→3 +Q4→1 = cNR (T3 − T2 + T1 − T4) > 0

8) À l’aide de la définition du rendement (7.55), on obtient,

ηO = − W

Q+
= − W

Q2→3
= − c (T4 − T3 + T2 − T1)

c (T3 − T2)
= 1− T4 − T1

T3 − T2

7.10 Cycle d’Atkinson

James Atkinson était un ingénieur anglais qui a conçu plusieurs
moteurs à combustion. Le cycle thermodynamique qui porte son nom est une
modification du cycle d’Otto conçue pour améliorer son rendement. Le prix à
payer pour parvenir à un meilleur rendement est une diminution du travail réa-
lisé par le gaz sur l’environnement durant un cycle. Le cycle idéalisé d’Atkinson
est constitué des six processus réversibles suivants :

• 1 → 2 : compression adiabatique,

• 2 → 3 : compression isochore,

• 3 → 4 : expansion isobare,

• 4 → 5 : détente adiabatique,

• 5 → 6 : décompression isochore,

• 6 → 1 : contraction isobare.
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On suppose que les processus adiabatiques sont réversibles et que le cycle a lieu
sur un gaz parfait qui est caractérisé par,

p V = N RT U = cN RT γ =
c+ 1

c

Les grandeurs physiques suivantes qui caractérisent le cycle sont supposées
connues : les volumes V1, V2 et V6, les pressions p1 et p3, la température T5

et le nombre de moles N de gaz. Analyser ce cycle en utilisant les instructions
suivantes.

1) Esquisser le diagramme (p, V ) du cycle d’Atkinson.

2) Déterminer les pressions p2, p4, p5, p6, les volumes V3, V4, V5 et les tempé-
ratures T1, T2, T3, T4, T6, en termes des grandeurs physiques connues.

3) Déterminer les travaux W1→2, W2→3, W3→4, W4→5, W5→6, W6→1 et le
travail W effectué par cycle.

4) Déterminer les transferts de chaleur Q1→2, Q2→3, Q3→4, Q4→5, Q5→6,
Q6→1 et la chaleur Q+ = Q2→3 +Q3→4 fournie au gaz.

5) Déterminer le rendement du cycle d’Atkinson,

ηA = − W

Q+

7.10 Solution

1) La compression adiabatique 1 → 2 est représentée sur le diagramme (p, V )
par une courbe convexe de pression croissante et de volume décroissant
(fig. 7.5),

p2
p1

=

(
V1

V2

)γ

> 1

V1V2 V6

V

p

p3

p1
1

2

3 4

5

6

Fig. 7.5 Diagramme (p, V ) du cycle d’Atkinson
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La compression isochore 2 → 3 est représentée sur le diagramme (p, V ) par
un segment vertical de pression croissante,

V = V2 = V3 = cste et p2 < p3

L’expansion isobare 3 → 4 est représentée sur le diagramme (p, V ) par un
segment horizontal de volume croissant,

p = p3 = p4 = cste et V2 < V3

La détente adiabatique 4 → 5 est représentée sur le diagramme (p, V ) par
une courbe convexe de pression décroissante et de volume croissant,

p5
p4

=

(
V4

V5

)γ

< 1

La décompression isochore 5 → 6 est représentée sur le diagramme (p, V )
par un segment vertical de pression décroissante,

V = V5 = V6 = cste et p5 > p6

La contraction isobare 6 → 1 est représentée sur le diagramme (p, V ) par
un segment horizontal de volume décroissant,

p = p6 = p1 = cste et V6 > V1

2) À l’aide de la relation (5.108) et de l’équation d’état du gaz parfait (5.66),
les pressions sont données par,

p2 = p1

(
V1

V2

)γ

p4 = p3 p5 =
N RT5

V6
p6 = p1

et les volumes par,

V3 = V2 V4 =

(
N RT5

p3

) 1
γ

V
γ− 1

γ

6 V5 = V6

Les températures s’écrivent,

T1 =
p1 V1

N R
T2 =

p1 V1

N R

(
V1

V2

)γ− 1

T3 =
p3 V2

N R

T4 =

(
p3 V6

N R

) γ− 1
γ

T
1
γ

5 T6 =
p1 V6

N R

3) D’après la relation (7.20), les travaux effectués durant la compression adia-
batique et la détente adiabatique s’écrivent,

W1→2 = ∆U1→2 = cNR

∫ T2

T1

dT = cNR (T2 − T1) > 0

W4→5 = ∆U4→5 = cNR

∫ T5

T4

dT = cNR (T5 − T4) < 0
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D’après la relation (7.25), il n’y a pas de travail effectué durant la compres-
sion isochore et la décompression isochore,

W2→3 = W5→6 = 0

D’après la relation (7.29), les travaux effectués durant les processus isobares
s’écrivent,

W3→4 = −
∫ 4

3

p dV = − p3

∫ V4

V3

dV = − p3 (V4 − V3)

= −NR (T4 − T3) < 0

W6→1 = −
∫ 1

6

p dV = − p1

∫ V1

V6

dV = − p1 (V1 − V6)

= −NR (T1 − T6) > 0

Le travail effectué sur le gaz durant un cycle s’écrit,

W = W1→2 +W3→4 +W4→5 +W6→1

= cNR (T2 − T1 + T5 − T4)− NR (T4 − T3 + T1 − T6) < 0

4) D’après la relation (7.19), il n’y a pas d’échange de chaleur durant la com-
pression adiabatique et la détente adiabatique,

Q1→2 = Q4→5 = 0

D’après la relation (7.26), les chaleurs échangées durant la compression
isochore et la décompression isochore sont données par,

Q2→3 = ∆U2→3 =

∫ U3

U2

dU = cNR

∫ T3

T2

dT = cNR (T3 − T2) > 0

Q5→6 = ∆U5→6 =

∫ U6

U5

dU = cNR

∫ T6

T5

dT = cNR (T6 − T5) < 0

D’après la relation (7.30), les chaleur échangées durant l’expansion isobare
et la contraction isobare s’écrivent,

Q3→4 = ∆H3→4 =

∫ H4

H3

dH = (c+ 1)NR

∫ T4

T3

dT

= (c+ 1) NR (T4 − T3) > 0

Q6→1 = ∆H6→1 =

∫ H1

H6

dH = (c+ 1)NR

∫ T1

T6

dT

= (c+ 1) NR (T1 − T6) < 0

La chaleur fournie par le réservoir chaud s’écrit,

Q+ = Q2→3 +Q3→4 = cNR (T3 − T2) + (c+ 1) NR (T4 − T3) > 0
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5) À l’aide de la définition du rendement (7.55), on obtient,

ηA = − W

Q+
= − c (T2 − T1 + T5 − T4)− (T4 − T3 + T1 − T6)

c (T3 − T2) + (c+ 1) (T4 − T3)

=
(T1 − T2 + T4 − T5)− (γ − 1) (T3 − T4 + T6 − T1)

(T3 − T2) + γ (T4 − T3)

7.11 Cycle calorifique

Un gaz parfait caractérisé par le coefficient c (5.78) et par le coef-
ficient γ = (c+ 1) /c subit un cycle calorifique constitué de quatre processus
réversibles (fig. 7.6) :

• 1 → 2 : compression adiabatique,

• 2 → 3 : contraction isobare,

• 3 → 4 : décompression isochore,

• 4 → 1 : expansion isobare.

1
4

3 2

V 1V2 V3

p2

p1

V

p

Fig. 7.6 Diagramme (p, V ) du cycle calorifique

Analyser ce cycle en utilisant les instructions suivantes.

1) Déterminer le volume V2 en termes du volume V1 et des pressions p1 et p2.

2) Déterminer la variation d’entropie ∆S2→3 durant la contraction isobare.

3) Déterminer la chaleur échangée Q2→3 durant la contraction isobare.

4) Supposer à présent qu’au lieu d’un gaz parfait on a utilisé un fluide qui est
entièrement dans un état gazeux au point 2 et entièrement dans un état
liquide au point 3. La contraction isobare 2 → 3 est alors une transition de
phase qui a lieu à la température T et qui est caractérisée par la chaleur
latente molaire de vaporisation ℓℓ→g. Déterminer la variation d’entropie
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∆S2→3 durant la transition de phase en termes du nombre de moles N de
fluide, du volume V2, de la pression p2 et de la chaleur latente molaire de
vaporisation ℓℓ→g, en supposant que p V = NRT dans la phase gazeuse.

7.11 Solution

1) À l’aide de la condition d’adiabacité (5.108), le volume V2 s’écrit,

V2 = V1

(
p1
p2

) 1
γ

2) D’après la relation (7.33), la variation d’entropie durant la contraction iso-
bare est donnée par,

∆S2→3 =

∫ S3

S2

dS = (c+ 1)NR

∫ T3

T2

dT

T
= (c+ 1)NR ln

(
T3

T2

)
< 0

3) D’après la relation (7.30), la chaleur restituée à l’environnement durant la
contraction isobare s’écrit,

Q2→3 = ∆H2→3 =

∫ H3

H2

dH = (c+ 1)NR

∫ T3

T2

dT

= (c+ 1) NR (T3 − T2) < 0

4) D’après la relation (2.57), la chaleur restituée à l’environnement durant la
transition de phase à température T est,

Q2→3 = T

∫ S3

S2

dS = T (S3 − S2) = T ∆S2→3 < 0

D’après les relations (6.62), (6.68) et l’équation d’état du gaz parfait (5.66),
on en conclut que,

∆S2→3 =
Q2→3

T
= − Qℓ→g

T
= − N ℓℓ→g

T
= − N2 Rℓℓ→g

p2 V2
< 0

7.12 Cycle de Carnot progressif

Un système simple constitué deN moles de gaz parfait monoatomique
homogène est contenu dans un cylindre fermé. Durant chaque cycle ditherme,
le gaz parfait est mis en contact avec une source chaude fermée, qui est un
réservoir à température fixée T+, et avec une source froide fermée et rigide qui
est constituée de N moles de gaz parfait diatomique homogène. La source froide
n’est pas un réservoir de chaleur. Ainsi, la température de la source froide varie
d’un cycle au suivant dû au transfert de chaleur avec le système. Toutefois,
dans ce modèle, on fait l’approximation que la température de la source froide
est constante durant chaque cycle. Cela est le cas si le cycle est suffisamment
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petit pour être considéré comme quasiment infinitésimal. Au début du ne cycle,
la température de la source froide est T− (n). Durant ce cycle, le gaz parfait
monoatomique subit les quatre processus réversibles formant le cycle réversible
moteur de Carnot (fig. 7.7) :

• 1 → 2 détente isotherme à température T+,

• 2 → 3 détente adiabatique,

• 3 → 4 compression isotherme à température T− (n),

• 4 → 1 compression adiabatique.

La capacité thermique isochore CV des N moles de gaz monoatomique dans le
système et la capacité thermique isochore C −

V (n) des N moles de gaz diato-
mique dans la source froide durant le ne cycle s’écrivent,

CV = cNR =
3

2
NR et C −

V (n) = c−(n)NR

En raison des degrés de liberté internes aux molécules, la capacité thermique
isochore de la source froide change brusquement en fonction de la température.
On modélise cela en considérant que durant les n0 − 1 premiers cycles, c’est-
à-dire n < n0, le gaz parfait de la source froide est diatomique rigide et que, à
partir du ne

0 cycle, c’est-à-dire n ⩾ n0, il devient diatomique vibrant,

c−(n) =


5

2
si n < n0

7

2
si n ⩾ n0

Les grandeurs suivantes sont supposées connues : la température T+ de la
source chaude, la température T−(n) de la source froide au début du ne cycle,
les volumes V1 et V2, le nombre N de moles de gaz parfait, les nombres de
cycles n et n0, la constante c−(n).

Analyser ce cycle en utilisant les instructions suivantes.

1) Esquisser qualitativement le diagramme (T, S) du ne cycle en indiquant les
états 1 à 4 et en définissant l’orientation du cycle avec des flèches.

2) Déterminer la chaleur Q−(n) restituée à la source froide à température
T −(n) durant le ne cycle.

3) Déterminer le travail W (n) effectué sur le système durant le ne cycle.

4) Déterminer la variation d’enthalpie ∆H2→3 (n) du système lors de la dé-
tente adiabatique 2 → 3 durant le ne cycle.

5) Montrer que l’accroissement de température ∆T −(n) de la température de
la source froide lors du ne cycle s’écrit,

∆T −(n) = λ (n) T −(n)

et déterminer le coefficient λ (n) > 0.
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1

2

3
4

Fig. 7.7 Diagramme (p, V ) du ne cycle de Carnot progressif.

6) En déduire les températures de la source froide T −(n0) et T
−(n1) au début

des ne
0 et ne

1 cycles, où n1 > n0, en termes de sa température initiale T −(1)
au début du 1er cycle.

7) Durant le 5e cycle, en supposant n0 > 5, on constate que le rendement
ηC (5) du moteur fonctionnant selon ce cycle de Carnot progressif a diminué
de 20% par rapport au rendement ηC (1) durant le 1er cycle. Déterminer
le rapport des volumes V2/V1 en termes de la température T −(1) de la
source froide au début du 1er cycle. En déduire la température au début du
5e cycle.

7.12 Solution

1) La détente isotherme 1 → 2 est représentée sur le diagramme (T, S) par un

1 2

34

Fig. 7.8 Diagramme (T, S) du ne cycle de Carnot progressif.
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segment horizontal d’entropie croissante (fig. 7.8),

T+ = T1 = T2 = cste et S− = S1 < S2 = S+

La détente adiabatique 2 → 3 est représentée sur le diagramme (T, S) par
un segment vertical de température décroissante,

S+ = S2 = S3 = cste et T+ = T2 > T3 = T−

La compression isotherme 3 → 4 est représentée sur le diagramme (T, S)
par un segment horizontal d’entropie décroissante,

T− = T3 = T4 = cste et S+ = S3 > S4 = S−

La compression adiabatique 4 → 1 est représentée sur le diagramme (T, S)
par un segment vertical de température croissante,

S− = S4 = S1 = cste et T− = T4 < T1 = T+

2) Durant le ne cycle, la chaleur Q−(n) est restituée par le gaz parfait mono-
atomique à la source froide durant la compression isotherme à température
T −(n),

Q−(n) ≡ Q3→4 (n) =

∫ S4

S3

T (n) dS(n) = T −(n)

∫ S−

S+

dS

où S3 = S+ et S4 = S−. Durant ce processus, la relation de Gibbs s’écrit,

dU = T −(n) dS − p (n) dV (n) = 0

Ainsi, pour le gaz parfait monoatomique durant la compression isotherme,

dS =
p (n) dV (n)

T −(n)

compte tenu de l’équation d’état,

p (n)V (n) = NRT −(n)

la chaleur Q−(n) restituée à la source froide devient,

Q−(n) = NRT −(n)

∫ V4(n)

V3(n)

dV (n)

V (n)
= −NRT −(n) ln

(
V3 (n)

V4 (n)

)
< 0

Durant la détente adiabatique 2 → 3 et la compression adiabatique 4 → 1,
les températures et volumes satisfont les identités suivantes,

T+ V γ− 1
2 = T −(n)V γ− 1

3 (n) et T+ V γ− 1
1 = T −(n)V γ− 1

4 (n)

où T1 = T2 = T+ et T3 (n) = T4 (n) = T −(n). Le rapport de ces identités
s’écrit, (

V2

V1

)γ− 1

=

(
V3 (n)

V4 (n)

)γ− 1
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Par conséquent, on en déduit que,

V2

V1
=

V3 (n)

V4 (n)
> 1

Par conséquent, la chaleur Q−(n) restituée à la source froide devient,

Q−(n) = −NRT −(n) ln

(
V2

V1

)
< 0

3) La chaleur fournie au système durant la détente isotherme 1 → 2 s’écrit,

Q+ ≡ Q1→2 = NRT +

∫ V2

V1

dV

V
= NRT+ ln

(
V2

V1

)
> 0

Compte tenu du fait que les processus 2 → 3 et 4 → 1 sont adiabatiques,
les transferts de chaleur durant ces processus sont nuls,

Q2→3 = 0 et Q4→1 = 0

Par conséquent, compte tenu des chaleurs Q+, Q−(n), Q2→3, Q4→1, la
chaleur fournie au système durant le ne cycle est,

Q (n) = Q1→2 +Q2→3 +Q3→4 (n) +Q4→1 = Q+ +Q−(n)

= NR
(
T+ − T −(n)

)
ln

(
V2

V1

)
> 0

D’après le premier principe appliqué au ne cycle, le travail réalisé sur l’envi-
ronnement durant le ne cycle s’écrit,

W (n) = ∆U (n)− Q (n) = −Q (n) = −NR
(
T+ − T −(n)

)
ln

(
V2

V1

)
< 0

4) Compte tenu de la relation de Mayer, la variation d’enthalpie lors de la
détente adiabatique 2 → 3 durant le ne cycle s’écrit,

∆H2→3 (n) = Cp

(
T3 (n)− T2

)
= (CV +NR)

(
T− (n)− T+

)
= (c+ 1)NR

(
T− (n)− T+

)
= − 5

2
NR

(
T+ − T− (n)

)
< 0

5) Lors du ne cycle, la chaleur restituée à la source froide rigide de capa-
cité thermique isochore C −

V (n) est l’opposé de la chaleur cédée par le gaz
monoatomique Q−(n),

−Q−(n) = C −
V (n) ∆T −(n) > 0

Par conséquent, l’accroissement de température ∆T −(n) de la source froide
s’écrit,

∆T −(n) = − Q−(n)

C −
V (n)

=
NRT −(n)

C −
V (n)

ln

(
V2

V1

)
=

T −(n)

c−(n)
ln

(
V2

V1

)
> 0



Cycle de Carnot progressif 17

Par conséquent, le coefficient λ (n) vaut,

λ (n) =
1

c−(n)
ln

(
V2

V1

)
> 0

6) La température de la source froide au début du ne
0 cycle s’écrit,

T −(n0) = T −(n0 − 1) + ∆T −(n0 − 1) = T −(n0 − 1)
(
1 + λ (n0 − 1)

)
Jusqu’au début du ne

0 cycle, le gaz parfait de la source froide est diatomique
rigide, c’est-à-dire c−(n) = 5/2. Ainsi, par récurrence, la température de
la source froide devient,

T −(n0) = T −(1)

n0− 1∏
n=1

(
1 + λ (n)

)
= T −(1)

(
1 +

2

5
ln

(
V2

V1

))n0− 1

Du ne
0 cycle jusqu’au début du ne

1 cycle, le gaz diatomique de la source froide
est vibrant, c’est-à-dire c−(n) = 7/2. Ainsi, par récurrence, la température
de la source froide devient,

T −(n1) = T −(n0)

n1− 1∏
n=n0

(
1 + λ (n)

)
= T −(n0)

(
1 +

2

7
ln

(
V2

V1

))n1−n0

En substituant la température T −(n0) au début du ne
0 cycle dans la tem-

pérature T −(n1) au début du ne
1 cycle, on en conclut que,

T −(n1) = T −(1)

(
1 +

2

5
ln

(
V2

V1

))n0− 1(
1 +

2

7
ln

(
V2

V1

))n1−n0

7) Compte tenu de la chaleur Q−(n) restituée à la source froide, et de la cha-
leur Q (n) fournie au système ou du travail Q (n) réalisé sur l’environnement
durant le ne cycle, le rendement du moteur de Carnot durant le 5e cycle
s’écrit,

ηC (5) = − W (5)

Q+
=

Q (5)

Q+
=

T+ − T −(5)

T+

Le rapport des rendements s’écrit,

ηC (5)

ηC (1)
=

T+ − T −(5)

T+ − T −(1)
=

4

5

Ainsi, la température T −(5) s’écrit,

T −(5) =
T+ + 4T −(1)

5

Durant le 5e cycle, où n0 > 5, le gaz parfait de la source froide est diato-
mique rigide, c’est-à-dire c−(n) = 5/2. La température évaluée durant le
5e cycle s’écrit,

T −(5) = T −(1)

(
1 +

2

5
ln

(
V2

V1

))4
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En comparant ces deux relations, on en déduit,

T+ + 4T −(1)

5T −(1)
=

(
1 +

2

5
ln

(
V2

V1

))4

Par conséquent, le rapport des volumes vaut,

V2

V1
= exp

(
5

2

(
T+ + 4T −(1)

5T −(1)

)1/4

− 5

2

)

7.13 Machine de Stirling à deux compartiments

Dans une machine Stirling opérant un cycle calorifique, un gaz par-
fait est enfermé par deux pistons dans un cylindre métallique d’axe horizontal
(fig. 7.9).

Fig. 7.9 États caractéristiques du cycle calorifique d’une machine de Stirling. Les parois
de gauche et de droite sont les sources de chaleur à températures T+ et T−. Les surfaces
striées représentent la grille séparant les deux compartiments. La grille n’est pas en contact
thermique avec l’environnement.

Les parois disjointes du cylindre, représentées en gris foncé, sont les sources
de chaleur à température T+ et T−. Les deux compartiments dans lesquels

V

T +

T –

V – V +

Fig. 7.10 Diagramme (p, V ) du cycle de Stirling calorifique pour un gaz parfait.
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se trouve le gaz sont séparés par une grille, qui fait office de paroi perméable
représentée avec des stries, à travers laquelle passe le gaz lors du mouvement
des pistons. Dans les deux compartiments, considérés comme des sous-systèmes
simples, le gaz parfait, caractérisé par le coefficient c (5.78), subit un cycle
calorifique de Stirling constitué de quatre processus (fig.7.10) :

• 1 → 2 : compression isotherme à la température T+ des parois de gauche ;

• 2 → 3 : décompression à travers la grille d’un volume initial V − à pression
constante p2 à gauche à un volume final V − à pression constante p3 à
droite ;

• 3 → 4 : détente isotherme à la température T− des parois de droite ;

• 4 → 1 : compression à travers la grille d’un volume initial V + à pression
constante p4 à droite à un volume final V + à pression constante p1 à gauche.

Analyser ce cycle en utilisant les instructions suivantes.

1) Déterminer le travail W+
2→3 effectué par le piston de gauche sur le gaz à

pression constante p2 et le travail W−
2→3 réalisé par le gaz sur le piston

de droite à pression constante p3 lors de la décompression d’un volume
initial V − à gauche à un volume final V −. En déduire le travail W2→3 =
W+

2→3 +W−
2→3 effectué par les pistons sur le gaz et l’exprimer en fonction

des températures T+ et T− des deux sources de chaleur.

2) Déterminer le travail W−
4→1 effectué par le piston de droite sur le gaz à

pression constante p4 et le travail W+
4→1 réalisé par le gaz sur le piston de

gauche à pression constante p1 lors de la compression d’un volume initial V +

à droite à un volume final V +. En déduire le travail W4→1 = W+
4→1+W−

4→1

réalisé par le gaz sur les pistons et l’exprimer en fonction des températures
T+ et T− des deux sources de chaleur.

3) Déterminer la variation d’énergie interne ∆U2→3 durant la décompression
et la variation d’énergie interne ∆U4→1 durant la compression.

4) Déterminer la chaleur Q2→3 fournie au gaz par les sources de chaleur durant
la décompression et la chaleur Q4→1 restituée aux sources de chaleur par
le gaz durant la compression.

5) Montrer que les variations d’enthalpie sont les chaleurs échangées entre les
sources de chaleur et le gaz parfait,

∆H2→3 = Q2→3 et ∆H4→1 = Q4→1

7.13 Solution

1) Compte tenu de l’équation d’état du gaz parfait évaluée aux états 2 et 3,

p2 V
− = NRT+ et p3 V

− = NRT−

le travail W+
2→3 effectué par le piston de gauche sur le gaz à pression

constante p2 d’un volume initial V − à un volume final 0 s’écrit,

W+
2→3 = − p2

∫ 0

V −
dV = p2 V

− = NRT+
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et le travail W+
4→1 réalisé par le gaz sur le piston de droite à pression

constante p3 d’un volume initial 0 à un volume final V − est,

W−
2→3 = − p3

∫ V −

0

dV = − p3 V
− = −NRT−

Par conséquent, le travail effectué par les pistons sur le gaz durant la décom-
pression 2 → 3 s’écrit,

W2→3 = W+
2→3 +W−

2→3 = NR
(
T+ − T−) > 0

2) Compte tenu de l’équation d’état du gaz parfait évalué aux états 4 et 1,

p4 V
+ = NRT− et p1 V

+ = NRT+

le travail W−
4→1 effectué par le piston de droite sur le gaz à pression

constante p4 d’un volume initial V + à un volume final 0 est,

W−
4→1 = − p4

∫ 0

V +

dV = p4 V
+ = NRT−

le travailW+
4→1 réalisé par le gaz sur le piston de gauche à pression constante

p1 d’un volume initial 0 à un volume final V + s’écrit,

W+
4→1 = − p1

∫ V +

0

dV = − p1 V
+ = −NRT+

Par conséquent, le travail réalisé par le gaz sur les pistons durant la com-
pression 4 → 1 est,

W4→1 = W−
4→1 +W+

4→1 = −NR
(
T+ − T−) < 0

Ainsi,
W4→1 = −W2→3

3) Les variations d’énergie interne du gaz parfait (5.78) durant la décompres-
sion 2 → 3 et la compression 4 → 1 s’écrivent,

∆U2→3 = − cNR
(
T+ − T−) < 0

∆U4→1 = cNR
(
T+ − T−) > 0

4) D’après le premier principe, la chaleur Q2→3 fournie au gaz par les sources
de chaleur durant la décompression et la chaleur Q4→1 restituée aux sources
de chaleur par le gaz durant la compression s’écrivent,

Q2→3 = ∆U2→3 − W2→3 = − (c+ 1)NR
(
T+ − T−) < 0

Q4→1 = ∆U4→1 − W4→1 = (c+ 1)NR
(
T+ − T−) > 0

5) Les variations d’enthalpie (5.86) durant la décompression 2 → 3 et la com-
pression 4 → 1 s’écrivent,

∆H2→3 = − (c+ 1)NR
(
T+ − T−) < 0

∆H4→1 = (c+ 1)NR
(
T+ − T−) > 0

Par conséquent,

∆H2→3 = Q2→3 et ∆H4→1 = Q4→1
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7.14 Cycle de Rankine

Un gaz parfait caractérisé par le coefficient c (5.78) et par le coefficient
γ = (c+ 1) /c subit un cycle moteur de Rankine constitué de quatre processus
réversibles :

• 1 → 2 : expansion isobare,

• 2 → 3 : détente adiabatique,

• 3 → 4 : contraction isobare,

• 4 → 1 : compression adiabatique.

Ainsi, le cycle est représenté par un rectangle dans un diagramme (p, S)
(fig.7.11).

p1

p3

S1 S2

1 2

4 3

p

S

Fig. 7.11 Diagramme (p, S) d’un cycle de Rankine pour un gaz parfait.

Analyser ce cycle en utilisant les instructions suivantes.

1) Esquisser le diagramme (p, V ) du cycle de Rankine pour un gaz parfait.

2) Déterminer les travaux effectués W1→2, W2→3, W3→4 et W4→1 et le travail
effectué durant un cycle W en termes des enthalpies H1, H2, H3 et H4.

3) Déterminer la chaleur fournie au réservoir chaud Q+ = Q1→2 en termes
des enthalpies H1, H2, H3 et H4.

4) Déterminer le rendement du cycle de Rankine pour un fluide parfait défini
comme,

ηR = − W

Q+

7.14 Solution

1) L’expansion isobare 1 → 2 est représentée sur le diagramme (p, V ) par un
segment horizontal de volume croissant (fig. 7.12),

p = p1 = p2 = cste et V1 < V2
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p1

p3

p

V

1

4 3

2

Fig. 7.12 Diagramme (p, V ) d’un cycle de Rankine.

La détente adiabatique 2 → 3 est représentée sur le diagramme (p, V ) par
une courbe concave de pression décroissante et de volume croissant,

p3
p2

=

(
V2

V3

)γ

< 1

La contraction isobare 3 → 4 est représentée sur le diagramme (p, V ) par
un segment horizontal de volume décroissant,

p = p3 = p4 = cste et V3 > V4

La compression adiabatique 4 → 1 est représentée sur le diagramme (p, V )
par une courbe concave de pression croissante et de volume décroissant,

p1
p4

=

(
V4

V1

)γ

> 1

2) D’après la relation (7.29), les travaux effectués durant l’expansion isobare
et la contraction isobare sont donnés par,

W1→2 = −
∫ 2

1

p dV = − p

∫ V2

V1

dV = − p (V2 − V1)

= −NR (T2 − T1) < 0

W3→4 = −
∫ 4

3

p dV = − p

∫ V4

V3

dV = − p (V4 − V3)

= −NR (T4 − T3) > 0

D’après la relation (5.86), ces travaux peuvent être exprimés en fonction
des enthalpies comme,

W1→2 =
1

c+ 1
(H1 − H2) =

γ − 1

γ
(H1 − H2)

W3→4 =
1

c+ 1
(H3 − H4) =

γ − 1

γ
(H3 − H4)
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D’après la relation (7.20), les travaux effectués durant la détente adiaba-
tique et la compression adiabatique sont donnés par,

W2→3 = ∆U2→3 = cNR

∫ T3

T2

dT = cNR (T3 − T2) < 0

W4→1 = ∆U4→1 = cNR

∫ T3

T2

dT = cNR (T1 − T4) > 0

D’après la relation (5.86), ces travaux peuvent être exprimés en fonction
des enthalpies comme,

W2→3 =
c

c+ 1
(H3 − H2) =

1

γ
(H3 − H2)

W4→1 =
c

c+ 1
(H1 − H4) =

1

γ
(H1 − H4)

La travail effectué durant un cycle est donné par,

W = W1→2 +W2→3 +W3→4 +W4→1

=
γ − 1

γ
(H1 − H2 +H3 − H4) +

1

γ
(H3 − H2 +H1 − H4)

= H1 − H2 +H3 − H4

3) D’après la relation (7.30), la chaleur fournie au gaz durant la détente isobare
est donnée par,

Q+ = Q1→2 = ∆H1→2 = H2 − H1

4) À l’aide de la définition (7.55) du rendement, on obtient le rendement du
cycle,

ηR = − W

Q+
= − W

Q1→2
= − H1 − H2 +H3 − H4

H2 − H1
= 1− H3 − H4

H2 − H1

7.17 Cycle de Stirling pour un fluide biphasique

Un fluide de van der Waals constitué de N moles est contenu dans
un cylindre fermé. Le cycle moteur de Striling que subit le fluide biphasique
est formé de quatre processus :

• 1 → 2 détente isotherme réversible à température T+,

• 2 → 3 décompression isochore réversible à volume V +,

• 3 → 4 condensation à température T− et pression p−,

• 4 → 1 compression isochore réversible à volume V −.
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T

–

+

V

p

1

2

34
T

V +
–V

–p

Fig. 7.13 Diagramme (p, V ) du cycle moteur de Stirling pour un fluide biphasique.

La courbe de saturation est représentée en traitillé. Les valeurs suivantes de
certaines fonctions d’état et paramètres sont supposées connues : la tempéra-
ture T+ de la source chaude, la température T− de la source froide, les volumes
V + et V −, le nombre N de moles et la chaleur latente molaire de vaporisation
ℓℓ→g (fig. 7.13).

Analyser ce cycle en utilisant les instructions suivantes.

1) Déterminer la variation de pression ∆p du fluide de van der Waals durant
un cycle.

2) Déterminer la chaleur Q1→2 fournie au fluide de van der Waals durant la
détente isotherme.

3) Déterminer la variation d’énergie libre ∆F1→2 du fluide de van der Waals
durant la détente isotherme.

4) Déterminer la variation de l’enthalpie ∆H2→3 du fluide de van der Waals
durant la décompression isochore en précisant son signe.

5) Exprimer la variation d’enthalpie ∆H3→4 du fluide de van der Waals durant
la condensation, qui est une transition de phase à pression constante p−

ayant lieu lorsque le fluide est en contact avec un réservoir de travail, en
termes de la chaleur latente molaire de vaporisation ℓℓ→g en précisant son
signe.

6) Déterminer la variation d’entropie ∆S4→1 du fluide de van der Waals durant
la compression isochore en précisant son signe.

7) Déterminer la variation d’énergie de Gibbs ∆G3→4 durant la condensation
dans le cas particulier où les potentiels chimiques du gaz et du liquide
s’écrivent µg = µ0 (Ng − Nℓ) et µℓ = µ0 (Nℓ − Ng) où Ng et Nℓ sont les
nombres de moles de gaz et de liquide de van der Waals et µ0 = cste > 0.

7.17 Solution

1) Comme la pression est une fonction d’état, sa variation sur un cycle est
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nulle,

∆p = ∆p1→2 +∆p2→3 +∆p3→4 +∆p4→1

= p2 − p1 + p3 − p2 + p4 − p3 + p1 − p4 = 0

2) Compte tenu de l’équation d’état du fluide de van der Waals (6.103), le
travail durant la détente isotherme à température T+ s’écrit,

W1→2 = −
∫ 2

1

p dV = −NRT+

∫ V +

V −

dV

V − Nb
+N2a

∫ V +

V −

dV

V 2

Le résultat de cette intégrale est,

W1→2 = −NRT+ ln

(
V + − Nb

V − − Nb

)
+N2a

(
1

V − − 1

V +

)
La variation d’énergie interne du fluide de van der Waals (6.118) durant la
détente isotherme s’écrit,

∆U1→2 = U2 − U1 = N2a

(
1

V − − 1

V +

)
En appliquant le premier principe pour un système fermé (1.65) compte
tenu du travail W1→2 et de la variation d’énergie interne ∆U1→2, la chaleur
fournie au gaz durant la contraction isotherme s’écrit,

Q1→2 = ∆U1→2 − W1→2 = NRT+ ln

(
V + − Nb

V − − Nb

)
> 0

3) La différentielle de l’énergie libre (4.23) s’écrit,

dF = dU − T+ dS = dU − δQ

Par intégration de la différentielle de l’énergie libre dF de l’état initial 1
à l’état final 2, on obtient la variation de l’énergie libre durant la détente
isotherme réversible,

∆F1→2 = ∆U1→2 − Q1→2 = W1→2

Compte tenu de la variation d’énergie interne ∆U1→2, de la chaleur Q1→2

ou du travail W1→2, la variation d’énergie libre durant la détente isotherme
s’écrit,

∆F1→2 = ∆U1→2− Q1→2 = N2a

(
1

V − − 1

V +

)
− NRT+ ln

(
V + − Nb

V − − Nb

)
4) Compte tenu de l’énergie interne du fluide de van der Waals (6.116), son

enthalpie (4.29) s’écrit,

H = U + p V = cNRT − N2a

V
+

NRT V

V − Nb
− N2a

V
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qui est remis sous la forme,

H = (c+ 1)NRT +
N2bRT

V − Nb
− 2N2a

V

ou de manière équivalente,

H =

(
(c+ 1) +

N b

V − Nb

)
NRT − 2N2a

V

La variation d’enthalpie s’écrit,

∆H2→3 = H3 − H2 = −
(
(c+ 1) +

N b

V + − Nb

)
NR

(
T+ − T−) < 0

5) Compte tenu du premier principe (1.59) pour un système fermé, la diffé-
rentielle de l’enthalpie s’écrit,

dH = dU + p− dV = δQ+ δW + p− dV

Comme la déformation durant la transition de phase est réversible, le travail
infinitésimal (2.43) s’écrit,

δW = − p− dV

Compte tenu du travail infinitésimal δW , la différentielle de l’enthalpie se
réduit à la chaleur infinitésimale,

dH = δQ

Par intégration de la différentielle de l’enthalpie dH de l’état initial 3 à
l’état final 4, on obtient la variation de l’enthalpie durant la condensation,

∆H3→4 = Q3→4

La chaleur Q− ≡ Q3→4 restituée à la source froide par les N moles de gaz
de van der Waals durant la condensation est l’opposé de la chaleur fournie
aux N moles de liquide de van der Waals durant la vaporisation Q43,

Q− ≡ Q3→4 = −Q4→3 = −N ℓℓ→g

Compte tenu de la chaleur Q3→4 restituée par le gaz de van der Waals, la
variation de l’enthalpie durant la condensation devient,

∆H3→4 = −N ℓℓ→g < 0

6) La relation de Gibbs s’écrit,

dU = T dS − p dV

On tire de la relation de Gibbs la différentielle de l’entropie,

dS =
dU

T
− p

T
dV = cNR

dT

T
+

(
2N2a

V 2 T
− NR

V − Nb

)
dV
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Durant la compression isochore, le volume V − est constant. Par intégration
de la différentielle de l’entropie dS de l’état initial 4 à l’état final 1, on
obtient la variation d’entropie durant la compression isochore réversible,

∆S4→1 =

∫ T+

T−
cNR

dT

T
= cNR ln

(
T+

T−

)
> 0

7) La différentielle de l’énergie libre de Gibbs (4.40) à température et pression
constantes s’écrit,

dG = µℓ dNℓ + µg dNg

Comme le système est fermé, le nombre de moles N de fluide est constant,

N = Nℓ+Ng ainsi Ng−Nℓ = N− 2Nℓ et Nℓ−Ng = 2Nℓ−N

et les potentiels chimiques deviennent,

µg = µ0 (N − 2Nℓ) ainsi µℓ = −µ0 (N − 2Nℓ)

De plus, les différentielles des nombres de moles s’écrivent,

dN = dNℓ + dNg = 0 ainsi dNg = − dNℓ

Durant la condensation, la pression p− et la température T− sont des
constantes. Par intégration de la différentielle de l’énergie libre de Gibbs
dG de l’état initial 3 à l’état final 4, compte tenu des potentiels chimiques
µg et µℓ, et des différentielles de quantité de fluide dNℓ et dNg, on obtient
la variation d’énergie libre de Gibbs durant la condensation,

∆G3→4 =

∫ N

0

(µℓ − µg) dNℓ = −
∫ N

0

2µ0 (N − 2Nℓ) dNℓ

= − 2µ0 N

∫ N

0

dNℓ + 4µ0

∫ N

0

Nℓ dNℓ = 0

Avec ce modèle de potentiels chimiques opposés, la diminution de l’éner-
gie libre de Gibbs du gaz de van der Waals compense l’augmentation de
l’énergie libre de Gibbs du liquide de van der Waals durant la condensation.


